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Nonparametric Selection, Ranking and Testing*

Sayaji N. Hande

Department of Statistics, Purdue University

Abstract

In this paper we consider the problem of ranking (partitioning) k& populations ac-
cording to the parameter which is defined as functionals of the distribution functions
on the underlying populations. We obtain minimax rules for general loss functions,
Bayes rules for some specific loss functions and propose approximate non-randomized
minimax rules. We also derive restricted minimax rules for selecting a subset of pop-
ulations which are better than a control. Some nonparametric “optimal” tests are
derived for different hypotheses written in terms of the parameter as a functional of
the underlying distribution function.
Key Words: Selection and ranking, nonparametric, comparison with a control, test-
ing, minimax decision rules, -+ - *° -t -

AMS 1985 subject classification: 62G99. 62C20.

1 Introduction

In practice, the experimenter is often faced with the problem of comparing k populations, for

example, comparing k different treatments in clinical trials, or comparing & different varieties

*This research was supported in part by the Office of Naval Research Contract N00014-88-K-017 and
NSF Grants DMS-86066964, DMS-8702620 at Purdue University.




of grain in an agricultural experiment. The classical tests of homogeneity never answer the
question “what next?” if the hypothesis is rejected. Mosteller (1948) and Paulson (1949),
and Bahadur (1950) were among the first research workers to recognize the inadequacy of
such tests for homogeneity and to reformulate the problem as a multiple decision problem
concerned with the ranking and selection of k¥ populations.

One approach pioneered by Bechhofer (1954) has been to allow the experimenter to
select one population which is guaranteed to be of interest to him with a fixed probability
P*, whenever the unknown parameters lie outside some subset of the parameter space. This
has been termed as the indifference zone approach. In contrast to the indifference zone
approach, Gupta (1956) proposed a formulation in which the experimenter obtains a subset
of k populations for which there is a fixed minimum probability P*, over the entire parameter
space, that the population of interest is selected. For an extensive review of the subset
selection methodology see Gupta and Panchapakesen (1979) and Gupta and Panchapakesen
(1986).

In this paper we consider a decision theoretic formulation of the ranking problem in
the nonparametric setup. Let the distribution function F on RP be characterized by the
functional §(F) = [gdF, where g is a known real-valued bounded function on RP and
6 = 6(F) is the parameter of interest.

Consider the following examples.

(1) SELECTING THE BEST:

Company A produces a product whose observable quality is represented by a random
variable Y. Company B has discovered " - w products of the same “type” and wants to
select one of those k& products which will beat the product of company A in the market. Let
us suppose X(i) represents the quality of the ¢ th product of company B for : = 1,....4.

A customer will select the product of the company A instead of a specified ith product of




company B if Y is grater than X(:). Hence in this problem the parameter of interest is
6(1) = Pr(X (i) > Y) and company B wants to select the product for which 8(7) is largest.
Here g is the distribution function of Y.

The function Pr(X < Y) is of considerable importance in many practical situations, such
as clinical trials, genetics, and reliability. For the estimation of the parameter Pr(X < Y)
and for related references see Brownie (1988), Simnoff, Hochber and Reiser (1986). In Section
3 “optimal” non-parametric tests for the various hypothesis for the parameter § = Pr(X <
Y) are derived.

(2) REGRESSION:

Let X = (X1, X3,...,X,) be a p dimensional random vector which has the distribution
function F'. We want to test whether z, is well approximated by h(z,,z3,...z,), where h
is a known real-valued function on R(P~1). Define §(F) = [d(X; — h(Xs, Xa,...,Xp)dF,
where d is an appropriate non-negative function on R. In this situation g(z) = d(z, —

h(z2,z3,...,%,)). We may want to test
H,:0(F) <8y vs Hy : 0(F) > 8o,

where 6§, is a known constant.
(3) SELECTING A SUBSET OF THE POPULATIONS CONTAINING A POPULATION
BETTER THAN THE CONTROL:

Let z(a) be the a th quantile of the control. There are k populations, IT;, I, ... . II;.
The population II; is associated with the distribution function F; on R, for ¢ = 1.2.... k.

We say the population II; is
“good™ if / ° dF; > «

and

“had” if / " dF. > a — 6.
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In this problem g(z) = I{~s,z,)(T).

It is important to consider a non-parametric model, since often in practice, especially
for the new treatments, there is not much information which could lead us to assume some
parametric model.

In the next section, we will derive a minimax procedure for the selection and ranking
problem, we also obtain a restricted minimax procedure for the problem when the populations
are compared with a control.

Our procedures, however, are randomized. We feel that the randomization is unavoidable
in the present situation, since as is known, certain properties of the risk function can be
improved only by using randomization. In some examples we will also prove that these
procedures are unique and admissible. In Section 4 we will derive some “optimal” non-
parametric tests.

Most of the existing results on non-parametric models, in genera! are asymptotic. The
finite sample results, which are presented here may be of use to check the optimality of the
existing procedures (tests) or for proving optimality of new tests.

It should be pointed out that results presented here do not apply to the problem of
selecting the population with the largest « th quantile ( or largest location parameter). Also
these results do not apply to the problem of selecting a subset of the population which
contains the population with largest o th quantile (or location parameter). Considerable
amount of work has been done on those kinds of problems. See Barlow and Gupta (1969),
Gupta and McDonald (1970), Gupta and Huang (1974), Rizvi and Sobel (1967), Sobel
(1967). An extensive review of non-parametric selection and ranking procedures is in Desu

and Bristol (1986).




2 Selection And Ranking

There are k populations I1;,II, ..., II;. The population II; is associated with the cumulative
distribution function Fi(.) on RP, for : = 1,2,..., k. The population II; is characterized by
the real-valued function,
0(F) = [ g(z)dF(z) ;
(F)= [ gl=)dF(z)
where ¢ is a known, real-valued bounded function on RP.

Define 0; =6(F;) fori=1,2,...,k and

F=(F,Fy...,F), 0=0(F)=(61,0a,...,0.

Let
F = {(F1, F,,...,Fy): F; is distribution on R? }
and
O = {(0(F1),0(F3),...,0(F}): F; is distribution on R? }.
Let X}, Xia,..., Xin be the n independent random vectors from population II;.

Problem (I) General Ranking Problem:

On the basis of a set of observations we wish to partition the set of the co-ordinate
values of the k dimensional parameter vector § = (6,,0,,...,6;) in to r disjoint subsets. say
51,52,...,5: , such that S; contains the ¢, largest components of #, S, contains next t,
largest components of  and ... , S, contains the ¢, smallest components of §. The size of
each subset is fixed in advance and Y[, t; = k.

Let the the action space A, be the set of all possible partition of the set {1,2,.... k}intor
subsets Sy, 52, ..., 5, of size t1,t,...,t,, respectively. Fora € Aleta = (S,1,Sa2,....5..,).
A decision rule § = §(.) ,

6() = {6(.,a):a€ A} ; (1)
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is a measurable function on R™*_ such that
0<é(.,a)<1
and
Z 6(z,a)=1.
a€A

If X = z is observed then the decision rule é§ takes the action a with the probability
(z,a) .

Let D be the class of all decision rules. We will consider the loss functions which are
“invariant”, “non-negative” and “monotone.” This type of loss structure is considered by
several authors, for example, see Eaton (1967), Gupta and Mieske (1984). Let L(...) . a real
valued measurable function, be a loss function on © x 4. Hence if one takes action a and if
the true parameter is 6 then the loss is L(f, a). Formally we write the conditions on the loss
function as:

[1] L(6,a) = O

[2] For every parmutation = on

{1,2,...,k} L(x(0),7(a))= L(0,a) YVa€ A

(3] Let 6; >6; anda=(5,5%:....,5), a =(5,85}...,5!) such that, for r; and r,
such that 1 <ri < <rVit#Frandi#r, S =5 and S) =(S,, -~ {j}Hu{i}), S, =
(Sr, = {t})U {j}), then,

L(8,a) < L(0,a");

(4] For every a € A L(0,a) is a continuous function of 4 .




The risk function of the decision rule é is given by

R\(F,8) = ErL(8(F),9)

= 3 L(6(F),8)Er§(X,a).
a€A

A minimax rule will be derived for the problem described above.
Problem (II) Selecting “good” populations:

We describe this problem as in Lehmann (1961). Let there be a fixed value 6, and
let A be a fixed positive real number. The population II; is said to be good (positive) if
0:(F) > 6p+A and bad if §;( F) < 8. We wish to select a subset of the populations containing
good populations, provided there exists at least one good population.

For this problem we will consider two loss functions, one will guard against selecting too
many bad populations and the other one will make sure that good populations are being
selected. As in Lehmann (1961) the following criteria will be used for measuring how well
the procedure carries out the task,

(S1) The expected number of good populations.

(S2) The expected proportion of good populations.

(S3) The probability of selecting at least one good population, provided there exists one.
(S4) The probability of including the “best” population provided it is “good”.

The following criteria are considered for measuring the performance of the procedure.
(R1) The number of bad populations in the selected subset.

(R2) The proportion of bad population in the selected subset.

For a subset selection procedure é§, S(8(F),6) is given by (S1), (S2), (S3) or (S4) and
R(O(F),é) is given by (R1) or (R2). Let

f’={ F: 0(F)>0,+A forsome i, 1<i<k }
and D, be the class of all procedures for selecting a subset of good populations. We will
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construct a restricted minimax procedure for this problem, that is, we will construct a

procedure é.. € D, which minimizes sup R(8(F'),6) among all § € D, for which

inf S(O(F),6)2p,

where p is a given fixed number.
To prove the main results, we need results from Eaton (1967) and from Lehmann (1961).

For sake of completeness, we state them.

Theorem 2.1 : Let the random variable X; have density ps,(z);t = 1,2,...k, ps(z) has

monotone likelihood ratio in x, and let Ry(0,6) be as defined in Problem I.

Let
B,, = {(B! I, 21':'2 Z 2 I, VZJ € Sa,j V_]}
H(z) = {a:a€A;z€ B,}.
And let
n(z) = number of elements in{a:a € H(x)}.
Define
' 1 :
§(z,a) = if a € H(z) (2)
n(r)
= 0 otherwise. (3)

Then the rule & minimizes supy Ry(0,6) among all 6 € D.

Theorem 2.2 : Let X, X;, Xs,..., Xk be the independent random variables with probability
densities pg (), po,(x),...,ps.(xk) respectively. Let pg(z) has monotone likelihood ratio in

z. Define R(8,8) and S(6,8) as in Problem II, where § is a subset selection procedure. Let




by = (b14y- -, 0ks), where

Where Ao and c are determined by the

1 fXi>c
/\o le=C

0 otherwise.

equation, Eg,1nb1s = p, then the rule 6, minimizes

sup, R(8,8) among cll rules é§ € D, such that

Jnf 5(6,9) 2 p,

where,

le{(ol,oz’---,gk)l 0; 260, +A forsomei}-

The supremum of R(0,6,) is attained at 8 = (0,00, . ..

attained at 8 = (0o + 6,6,,...,00).

Let X,, X>,... Xk, be independent

(n,61),(n,87),...,(n,8;) respectively.

sup R(8,6)
(139’

,00) and the infrimum of 5(8,4,) is

binomial random variables with parameters

For 6,(.) = b,(z),

Here c is a non-negative real number and A in (0,1) are chosen such that,

Po\,.,_A(‘Yl > C) + A P90+A(‘\’1 = C) = p.

If Y¥; is a sequence of binomial random

n{Pau(X >c)+ A P (X =¢)] (4)
h(8o, A, p) say. (5)
(6)

variables with parameters (n, p;), and as i — oo, p;

converges to pg, then the sequence of Y; converges weakly to Yy, we note that, for a fixed p.

h(0o, A, p) is a continuous function of 8y and A.

9




Making transformation on g, if necessary

g9(z) — inf g(z)
sup g(z) — inf g(z)

9(z) —
and observing that
/[ag(x) +bdF(z)=a 8(F)+b,
without any loss of generality we assume that
0<g(r) <1V z€ RP and supg(x) =1, infg(z)=0.
Lemma 2.1 : If § € D,, a subset selection procedure for Problem II and

it S(O(F), 8) 2 p,

then

sup R(6,6) > h(fo, Ao, p),
FeF

where h(8o, Ao.p) is as defined in (4).

Proof:
We know that infg(z) = 0 and supg(z) = 1. Let 6 € D,. Fix ¢ >0, and get a and b
such that g(a) =€ , g(b)=1—-¢€ and 0 < ¢, + €; < €.

Let P; be the probability measure induced by a distribution function F;. // Define

P({b})=pi; P{a})=1-p
Fo= Fopon = A F: ({6}) =pi A({a}) Pl -

0<p; <1; fori=1,2...,k

If F=(fH,F,...,F) € Fo, then

b; = H(Fi)
= ea(l—p)+(1-e)p

= ¢+ (1 —€ —€)pi.
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Therefore, 6(F;) < 6y if and only if

0o — &1
PaSl )
— € — €2

and @(F;) > 6+ A if and only if

p~> 00—61 A
Tl —e l—€ —€

For:=1,2,...k, define

Ti=#{Xij: Xij=0bj=12,...,n}.

Note that for a class of distribution functions Fp, the statistics T = (T;,T,..

.,Tk) is a

complete sufficient statistics. We also note that T,T3,..., T, are independent and they

have binomial distributions with parameters (n,p;),(n,p2),...,(n,px) respectively. Since

FoNF' C F', and
inf, S(O(F),6)2 p

we have,

Jnt S(0(F),6) 2 p.

Also the binomial family possess the monotone likelihood ratio property. By Theorem 1.2.2

we have,

sup R(O(F),8) > h(—2 =9 2

A b
FeFy 1—61—'62 1—'61—62

And since F D Fo . we have,

sup R(0(F),6) > sup R(O(F),6)
FeF Fe¥y

h( 00—61 A

v

p).

11
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Since € > 0 is arbitrary, letting ¢ — 0, we have

00—61
— 8
1—61—62

and
A

1—61—62

— A.
As we noticed before h is a continuous function, letting ¢ — 0, we get

FeF

This completes the proof of the lemma.

Suppose that X; has a binomial distribution with parameter (n,#9;), for i = 1,2,..., k.

Let
sup Rl(oa 6’) = Rs (12)
8
where &' is as defined in (2).
Lemma 2.2 If§ € D is a decision rule for the Problem I then
sup Ri(9(F),8) 2 R
FeF
where R is as defined in ( 12).

Proof:-

Fix ¢ > 0 and get ¢;, € and a, b, Fo = Fo(g.e) and T = (T1,Ts,....T%)
as in Lemma 1. Observe that Ty,T,,...,T; are independent binomial with parameters
(nyp1),(n,p2),...,(n,px) respectively. Here 8; = 65y = €1 + (1 — €, — €)p; for each i,

0<pi<1lifand onlyif ¢ < 8; <1 — €. By Theorem 1 if é is any decision rule then,

sup R{(8(F),8) > sup R (0(F),bo)
FeFy Fe¥Fo

12




where &y(z,a) = §'(T,a) and ¢’ as defined by (2).

Since

we have

For F € Fo ,

sup Ry(8(F),6) 2 sup Ri(8(F),6),
FeF FeFy

sup RI(O(F)a‘S) Z sup RI(F’ 60) = R(q,cz) say.
FeF Fe}-o,(q €2)

Ri(6(F),8) = 3 Epé'(T,a) L(8(F),a).
a€A

The expectation of 8'(T,a) depends on F only through § = 6(F)and 8= (& +(1—

e1—€2)pr, a1+ (1l —e1—€2)pa, ..., a1+ (L —e1—€2)pk) — (p1,p2,--.,Pk) as 1+ €2 — 0. We

know that for every a € A, L(.,a) is continuous over [0, 1]*, hence it is uniformly continuous

over [0, 1]*. We have R, .,) — R as €, + ¢, — 0. Hence

sup Ri(F,8) > R, (13)
FeF

and this completes the proof of the lemma.

Let a random variavle X have a binomial distribution with the parameters (n,6y + A).

Let c=¢(p) >0 and A = A(p) € [0,1) such that,

Let Z1, Z,,..

P1, P2, - - - Pk- Define,

P(X>c)+ A P(X=¢)=p.

. Zx be the independent Bernoulli random variables with parameters

w(pl,pg,...,pk)z P(Zl+ZQZk>C(P)) (14)

+ Ap) P(Z1+ 2Z;...+ Zi = c(p))- (15)
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Let Z = (Zv1,Zh2y- -y Zany -y Zx1y Ziay - - - Zkn) be a random vector. Components of Z

for X = (X11, Xa2,--- Xin, ... Xk1, X2, ..., Xk,) are independent Bernoulli with
P(Zij = 1z) = g(Xi;) ¥ 1, .
Let . =%7,2;; ; T=(T,T,,...Tk). Let &' be as in Theorem2.1 . Define
§"(z,a) = E(8'(T,a)| X = z). (16)

Theorem 2.3 :

(1) The decision rule §"(.,.) = 6"(z,a) is a minimaz rule for a class of loss functions defined
for the Problem I .

(it) Let 8;(x) = ¢ (g(zi1), 9(ziz)y ..., g(zin)) ; fori =1,2..., k. Then the decision rule b.. =

(61,02,...,6k) is a restricted minimaz procedure for the Problem II .

Proof:
(i) .
Ry(6(F),8")
= ErY §"(X,a)L(8(F),a)
= Zf_;:a"(x,a)]L(a(F),a)
= GGZAE[E,:&’(T, alX = 2)]L(6(F), a)
= E Ep6'(T,a)L(6(F),a).
ach

We notice that Ty, T3,..., T are independent random variables. The marginal distribu-
tion of 7; is binomial with the parameters (n,0(F;)) for i =1,2,... k.

Hence

sup Ri(F,6") = sup [D_ Eré'(T,a)L(0,a)]
¥

0<6:<1 ge4

= R.

14




By Lemma 1.2.2 the result follows.

(i2) .
Observe that §,(X), 82(X),...8k(X) are independent.

Epdi(X) = Eryp(9(zi,g9(ziz),...,9(Tin))

P(T: > ¢(p)) + Ap) P(Ti = c(p))-

Here T1,T,,...,T; are independent binomial with parameters (n,0(F)),(n,0(F3;)),...

(n,8(F%)) respectively.
For F € F ,

S(O(F),6ua(.)) = S(8(F), 64(.)),
where
6,(.) =68,(T) and T = (T1,T>,...,Tk).
The decision rule §, is as before and
R(6(F),é..) = R(O(F),6,)
By the choice of ¢ = ¢(p) and A = A(p) and by (11) we have

sup R(8(F),6..) = sup R(8,6,)
FerF 6

= h(ao,A,p)
and
inf S(6.6,) = inf S(6.6,)
= p.

and this completes the proof.

15
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Remark 2.1

Notice that the minimax procedures we have established are randomized. To avoid ran-
domization, for example in Problem I, we may take action a € A if §'(z,a) > é'(z.a’) for
all @' € A. We feel that this procedure may be approximate minimax and will be more
useful in practical situations. However it is difficult to establish analytic properties of this

approximated procedure.

3 Discussion and Examples

In this section we consider a few examples (problems) and consider the Bayes rules with

respect to particular priors and see how different they are from the minimax rules.

Example 3.1
Nonparametric Bayes Procedures
Let 8, as defined before, be the parameter of interest. Let us suppose that we are interested

in selecting population II; for which 6; is largest. Here

0= 6(P) = [ g(t) dP.(0).

and P; is a probability measure corresponding to population II;. Let for eacht = 1,2,... k.
the probability measures Py, P,, ..., P, are independently, identically distributed with com-
mon Dirichlet distribution D(a). The probability measure P on X is said to have Dirichlet
distribution with parameter « if for any k, A,, A,,..., A is some measurable partition of X
then (P(A1), P(A,),..., P(Ak)) has Dirichlet distribution with parameters (a(A,;), a(Az),....a(d1).
See Ferguson (1973) and Ferguson (1974) for more discussion and for relative information.

Let the loss function be of the form
L(6,7) = max;8; — 6.

16




That is the loss for selecting i — th population is maz;8; — 8;. Then according to the Bayes

rule we select the population II; for which E(8(F;)

X = z) is largest. Following Ferguson
(1973) we know that the posterior distribution of P; follows a Dirichlet distribution with

parameter o + nP, ;. Hence the conditional expectation of 8; is

/Xg dla +nP,,).

Hence E(0(FP;)|X = z) is largest if and only if 6; =n1 2 7<i g(zi;) is largest. The procedure

we have established, will also select the ith population with high probability if §; is large.

Example 3.2
Let X1, Xi2,... X, be the observable random vectors from the population II; for : =
1.2,...,k. Let P, be the probability measure generated by the random variable X,; . Let

0; = P;(A) be the parameter of interest. Let X; = (X, X.,,... Xin) and

T(X) = Y La(Xy)-

j=1
Then according to the theorem above the procedure which ranks population II; according to
the rank of T; in T}, T3, ..., Tk is the minimax procedure for any permutation invariant loss
function. Here g(z) = I4(z) is an indicator function of set A.

We will show that this procedure is also Bayes procedure when P; , : = 1.2,...,k are
independently identically distributed with the Dirichlet prior. To see this, notice that the
posterior distribution of P;(A) has beta distribution with parameter p = a(A)+nP, ,(1) and
gq=c—p, fori=1,2,..., k. Where ¢ = a(X) +n, is a fixed constant. We also notice that if
a random variable Y has beta distribution with parameters p and ¢—p ( cis a fixed constant
) then y has a monotone likelihood ratio in p. From these facts it is straightforward to prove
that if L is any invariant loss function then the rule of ranking & population according to

ranks of T, ¢ = 1,2....,k, is a Bayes rule, and hence it is admissible.

The same argument holds for the (restricted) subset selection procedures.

17




4 Testing

Let X, X,,...,X, be observable independent random vectors with a common distribution
function F on RF.

Let 6(F) = [ gdF be the parameter of interest, where g is a real-valued bounded
function on RP such that supg(z) = 1 and infg(z) = 0. We will construct “optimal”

tests for testing the hypothesis,
Ho: O(FY€©y Vs H,: 0(F)e ©,.

Here ©, = ©F and Oy is of the form {6:0 < Oy} ,{0:0>6,} or {0:6=20}.
Comparison between the tests of level @ 1s made on the basis of the “power” of the test.

The power of a test ¢o at F for 8(F) € ©, , Pr(¢o Rejects Ho|F') is a function of F

and not O(F) alone. We will take a conservative view to choose the test. We will select the

test of level a , which maximizes the minimum power. We need the following definitions.

Definition 4.1 The function B(8) = B4(8) is called a minimum power function of the test
¢ if
Bs(0) = inf Pr(¢ Rejects Ho|F)

F: 8(F)=6

Definition 4.2 The test & of the level o is said to be the least uniformly most powerful
test ( LUMP ) if for any test ¢’ of level level a,

B3o(0) > B4(0) V 0 € Oy.

Definition 4.3 The test ¢ of level o 1is said to be the least uniformly most powerful
unbiased test ( LUMPU ) of level a if

Bs(0)>2a VOe O

18




and if ¢’ is any other test of level a with

By 2 a VO €0,

then
Bs(0) 2 By(0) VY € O
Let
h(p1,p2,... o) =Pr(Zi+ 2o+ ... 4+ Z,>c)+ A P51+ 22+ ...+ 2, = c).
where 2y, 23,...,2Z, are independent Bernolli with parameters p;,ps,-..,pn respectively.

A = Ma) and ¢ = ¢(a) are chosen such that, if Z is a binomial random variable with

parameters (n,0), then
Pr(Z > ¢(a) + Ma)P(X = c(a)) = a.
Theorem 4.1 For testing
Hy:0(F)< 6y Vs Hi:0(F)> 0o
the test ¢(x) = h(g(z1),9(x2),...,9(za)) is a least uniformly most powerful test.

Proof:
Let us fix an arbitrarily small ¢ > 0, get a ,b € RP such that g(a) = ¢, .g(b) =1 —¢,
and ¢; + ¢; < € Let
Flr)=0Vzr<a
Fo={F: =1-pVac€ [ab)
=1Vr>b

19




For the class Fo T = #{X,: Xi = b} is a sufficient statistics and have a binomial

distribution with the parameters (n,p), where

0(F) = a(l-p)+(l—-e)p

= ag+(l—¢ —e€)p

and § > 0, if and only if

) = Pler.e2) SaY.

For the class Fo the UMP test is ¢;(T) , where

01(T) =1 if0>C(€1,€2)
= Me,€e) if T =cle,e€)

= 0 ifT<T=C(€1,€2).

The constant ¢ = c(€;,€2) and A = A(e;,€3) are chosen such that, Pr(X > c) +
A P(X = ¢) = a, where X is a binomial random variable with parameters (n,p(,.c;))-
Power of the test ¢,(T') at 8 = 8, > 6o is Pr(T > c(e1,€2)) + Mer,€2) Pr(T = c(ey, €2)). Let

01+61 00—61
b
1—61—62 1—61—62

hy( ya) = Pr(T > c(e1,€2)) + Pr(T = c(e, €2)).

So, if ¢’ is any test of level a , then

By(8,) = F~9(i2)f=0, Pr(¢' Rejects Hy|F)
< o(F)ziorllfFe}'o Pr(¢'Rejects Ho|F)

91+61 90—61
1—61——62’1—6‘—62’

< hy

a).
We know that h; is a continuous function, letting ¢ — 0 , we have

»%'(91) < h(al»OOvQ)
Pr(¢ rejects Hy |F) = Erpd(9(X1),9(X2),....9(X}))
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= Pr(Zyv+2Z2:+...4 2, > ¢)

FAPHZi+ Zo+ ...+ Z, =c).

Here 2y, Z,,. .., Z, are independent Bernolli with common parameter 6(F) .

Hence
54:(01) = h(oh bo, 0)

that is

B (01) < Bs(61) V8, > .

This proves the theorem.
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